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A new class of solvable models in quantum mechanics 
describing point interactions on the line 

F Gesztesyt and H Holden$ 
+ Institute for Theoretical Physics, University of Graz, A-8010 Graz, Austria 
i Institute of Mathematics, University of Trondheim, N-7034 Trondheim-NTH, Norway 

Received 9 March 1987 

Abstract. We provide a detailed analysis of properties of the Schrodinger operator in Lz(  R )  
which formally can be written as 

where 6’  is the derivative of Dirac’s 6-function and Y c R is discrete. This model allows 
for an explicit calculation of spectral properties. Special emphasis is given to the periodic 
case Y = Z ,  v = vi, j e  2 where the spectrum and the density of states are explicitly 
computed. Also the spectrum for a half-crystal is given. We study in detail spectral 
consequences when various defects and impurities are added to the periodic case. 

1. Introduction 

Solvable models are important in the sense that they provide exact and detailed 
information. Furthermore they can serve as a ‘laboratory’ for testing one’s intuition 
and  for testing conjectures. In this paper we study a new class of solvable one- 
dimensional Schrodinger operators in detail in which the Hamiltonian formally can 
be written as 

where Y is a discrete subset of R, finite or  infinite, and 8’ denotes the derivative of 
Dirac’s 6-function. The existence of the model (1.1) was pointed out by Grossmann 
et a1 [ 11; however, no detailed analysis has appeared so far. 

Before we proceed to a description of the content of this paper, we point out some 
properties of the operator (1.1). First of all we observe that the interaction is concen- 
trated on the discrete set Y, i.e. the potential is a point interaction. The corresponding 
model with 6’ replaced by 6 has been extensively studied, originating with Kronig and 
Penney [2]; see also the literature referred to in [3]. Whereas the 6-interaction model 
can be rigorously defined using quadratic forms, this approach does not work for (1.1). 
This is similar to the multidimensional case: the Hamiltonian corresponding to point 
interactions in dimensions two and three cannot be defined as a quadratic form. One 
way to define (1.1) rigorously (for simplicity we here take Y = ( 0 ) )  is to consider the 
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5158 F Gesztesy and H Holden 

operator ( 9 ( H )  denotes the domain of an operator H, cf [4]) 

which has deficiency indices ( 1 ,  1 )  (cf [4]). Then the members of the one-parameter 
family of self-adjoint extensions of fi serve as realisations of ( 1 . 1 )  with Y = (0). 

In § 2 we give a detailed description of properties of the self-adjoint realisation of 
( l . l ) ,  denoted by E@,,, Y = { ~ , E R \ ~ E J } ,  P=(p, ) ,E, ,  with J c N  finite, with special 
attention to spectral properties. The eigenvalues, of which there can be at most lJI 
(counting multiplicities), are then determined as zeros of an explicit IJl x IJl deter- 
minant. 

In § 3 we study in detail the case when Y forms a lattice Y = aZ. In particular we 
give explicitly the spectrum of ZPsaZ when p is constant. Furthermore we compute 
the density of states for this model. Finally we provide the spectrum of two half-crystals 
‘glued’ together, i.e. U ( E ~ + ~ )  with pJ = p’, j 2 0, pJ = p - ,  j < 0. The method used is 
to relate Z:p,,Z to a certain second-order difference operator on l * ( Z ) ,  a technique 
introduced by Phariseau [5] for the 8-model. 

For an analysis of various types of ordered alloys, both deterministic and random, 
for this model we refer to Gesztesy et a1 [6] where, e.g., the Saxon-Hutner conjecture 
[7] concerning gaps in the spectrum is proved. 

In § 4 we study how the introduction of certain impurities in the crystal affects the 
spectrum. More precisely it is proved that the essential spectrum remains invariant 
and absolutely continuous, while eigenvalues may occur in gaps of the spectrum. 
Detailed properties are given when only one impurity or defect is added. For a 
comprehensive presentation of models with point interactions we refer to Albeverio 
et a1 [3]. 

2. Basic properties 

We will start by giving some basic properties of the Schrodinger operator with a 
potential which is formally a finite sum of 8’-functions located at a set Y where 

y = IY, 3 .  . . 9 Y N }  R. (2 .1)  

Consider the closed, symmetric and non-negative operator k, with 

9 ( k , ) = { g ~ H ~ ~ * ( R ) l g ’ ( y ~ ) = O , j = l ,  . . . ,  N }  

H,,  = -d2/dx2 

where H Z 3 * ( R )  is the standard Sobolev space. Since formally fi, and 

d2 
dx2 --+ 1 v,S‘(.-y,) 

coincide on 9( f iy ) ,  it is reasonable to consider certain self-adjoint extensions of fi, 
as rigorous realisations of the Schrodinger operator with interaction given as a sum 
of 8’-functions located at Y.  The adjoint of fiy is 

9 ( ~ i * , ) = { g ~ H * , ~ ( R \ Y ) J g ’ ( y , + ) = g ’ ( y , ~ ) , j =  1,. . ., N } .  (2.3) 
d2 

dx2 
Hi*, = -- 
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It is easily seen that 

4,(x) =sgn(x-y,)  exp(iklx-y,l) j =  1, .  . . , N (2.4) 

(sgn x = XIXI-’, x # 0) span the deficiency subspaces of k,, and hence 

def( k y  ) = ( N ,  N ) .  ( 2 . 5 )  

We select the following N-parameter family EP., which by definition will be 
Thus there is a Nz-parameter family of self-adjoint extensions of k, (cf [4]). 

considered as a rigorous realisation of (1.1): 

’ ( ’ p , , )  = { g  E H2”(R\ ‘)lg’(Y,+) = g’ (yJ- )?  g ( y / * )  -g(Y , - )  = p,g’(Y,)>j = ‘ 9  ‘ ’ ’  > 

-02 < p, s CO Y, E R j = 1, . . . , N. 

Observe that p, = 0, j = 1, . . . , N gives Eo,, = -d2/dx2 on H’.’(R 
for some j E (1 , .  . . , N }  gives a Neumann boundary condition at y,. 

y,, 
(2.6) 

and that p, = 02 

The basic properties of can be summarised in the following theorem. 

Theorem 2.1. ( a )  The resolvent of E P , ,  equals ( p (  H) = C \ c ( H )  denotes the resolvent 
set of an  operator H )  

k 2  E p (4 P ,  ,), Im k 3 01 - E  < pJ s E PJ # (2.7) 

Y, E R j = l ,  . . . ,  N 
where 

(2.9) 

(2.10) 

(2.11) 

Furthermore if CL = O  in an  open set R c  R, then also E:p,L4 = O  in fl. 
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( c )  We have that (where uesJuac/u5c denotes the essential/absolutely con- 

(2.12) 

tinuous/singularly continuous part of the spectrum U )  

c 

g e s s ( = , , Y )  = U d C ( Z , , \  1 = L O ,  m), ( + z c ( E , , Y )  = 0. 

In addition 5:p,Y has at most N negative eigenvalues counting multiplicities and 

k i E  u,,(E,,>,)n(-cc, 0) iff det[rp,Y(ko)]=O Im k,> 0 (2.13) 

and the multiplicity of the eigenvalue k;?, equals the multiplicity of the eigenvalue zero 
of the matrix r4 ,L. (ko) .  The corresponding eigenfunction is 

(2.14) 

where ( c I ,  . . . , c,\ ) is an eigenvector of rp,  Y (  k,) to the eigenvalue zero. I f  at most one 
PI, ,=  E, then all the eigenvalues are simple. If p, =a? for at least two different 
j~ (1 , .  . . , N } ,  then E:p.v has in addition infinitely many eigenvalues embedded in 
[0, CO) accumulating at infinity. 

(2.15) 

where gE L'(R)  and Im k>O is such that det[r,,,(k)]#O. It is easily seen that 
h, E 9(3p,Y)  and by explicit calculation 

c ( 3 a . Y - k ' ) h  P -  - - h " - k ' h  0 P - g .  - 

(6)  We have that 

(2.16) 

9 ( Z p  Y )  = (E,,) - k 2 ) - ' L Z ( R )  Im k>O (2.17) 

and by using 

L 2 ( R ) =  ( -7- x- k 2  ) H 2 ' 2 ( R )  Im k>O 

and (2.7) the result (2.10) follows. To prove the locality property assume CC, of the 
form in (2.10) vanishes in Q, thus 

N 

4 k  ( x ) = - 1 [ r p .  Y ( k 11, I 4 k (y, ' )  Gk ( x - -VJ X E R .  (2.18) 
JJ = I  

Consider first the case when O n  Y =O. Then 

(2.19) 

(2.20) 
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from which we infer that the sum in (2.19) still equals zero when j is summed from 2 
to N. 

( c )  Weyl's theorem [8] implies that 

(2.21) 

The absence of a singular continuous spectrum follows from [8], theorem X . l l l .  
Turning now to the analysis of the point spectrum we assume 

(2.22) 

$ h ( x )  = a,,,,, e th l i+b ,+l  Y ,  < x < Y "1 r I 1 6 m G N - 1  (2.23) e - thy  

[ a N + ,  e lkx+ b,,, e - 'k r  x > y &  ; Im k>O k # 0. 

The boundary conditions (2.6) imply 
a m + ,  elk!*,, - b,,, e-'''m = a, elk'u - b,, 

a,?, eIk', , '(l-ikp,,)+b,,, ,  e-" ' , ' , ( l+ikp,,)=a, ,  e"" '~+b,  e-''',, (2.24) 

a l = a  b, = b m = 1 , .  . . , N - 1 

and thus satisfies (locally) - 
= p , Y $ k  = k'$a. (2.25) 

Clearly = 0. Since a,,,, b,, are uniquely defined (up  to a common 
multiplicative constant) we see that the eigenvalues are simple. I f  k'> 0, then $LI E 
L'(R)  iff a = b = 0 which implies l(lk = 0. Applying the same argument when k = 0 with 
the functions 

(2.26) 

From the explicit form of the resolvent we obtain (2.13). To infer the form (2.14) of 
the eigenfunctions, one has to recall that the residuum of the resolvent of a self-adjoint 
operator at an eigenvalue equals the projection onto the corresponding eigenspace. 
By applying this first to the self-adjoint matrix r O , ) ( k ) ,  Im k > 0 ,  and then to (Ep , ,  - 
k*)-'  we conclude that (2.14) is valid. Observe that 

(2.27) 

using (2.10) thereby proving that Ep,Y is a self-adjoint extension of f i y .  Since H )  a 0  
and d e f ( h , )  = ( N ,  N )  we infer using [4, p 2471 that Ep,Y has at most N negative 
eigenvalues counting multiplicity. Consider now the case when precisely one p,,, = cc 
and N a 2 .  The boundary condition in (2.6) at y,,, reduces to a Neumann condition, 
g'(y,(,) = 0, and hence R is decoupled into (--CO, y,,,) and (y,(,,  w). By essentially repeating 
the above argument for each of the  intervals one can prove that Eo,, has no non-negative 
eigenvalues. If however p, =CO for at least two different values of j E { 1,. . . , N } ,  say 

p Jii = p  11 =E YJv,,, < yl) (2.28) 
Ep,Y can be written as a direct sum of the corresponding operators on L2(-w,y,J, 
L2(y,,), Y , ~ )  and L 2 ( y , , ,  CO) respectively. Since the operator on L2(y , , ) ,  y,,) has an  empty 
essential spectrum, the discrete spectrum has eigenvalues accumulating at infinity, 
thereby proving the claim. The proof is completed. 

E L ' ( R )  iff a ,  = b, 

replaced by 1 and x we infer that 

g p ( E p , >  1 = ( - -E,  0). 

9( CI, ) c 9 ( E p  y ) 
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Recall that the corresponding operator with 8-function interactions instead of 8' 
interactions has the resolvent (see e.g. [9] or [3]) 

(2.29) 

(2.30) 

rp, Y ( k )  = - F - k 2 p . Y ( k )  k 2 p  = ( k ' p , ,  . . . , k 2 p N ) .  (2.31) 

By using this, some of the spectral results in theorem 2.1 could be deduced from the 
corresponding results for We have however chosen here to give an independent 
treatment. 

As an example of the above theorem, we consider the one-centre case, i.e. Y = (0). 
It then follows that has a simple, negative eigenvalue E = -4p-' provided 

p E (-00, 0) with corresponding eigenfunction $ E ( ~ )  = 62 , ,p (x ) .  We see from theorem 
2 . l ( a )  that eigenvalues and resonances (defined as poles of the resolvent for Im k < 0 ,  
i.e. points where det[rp.y(k)] =0,  Im k < 0 )  can be treated on an equal footing (cf 
also [lo]). Returning to the one-centre case, we see that Ep.O has a simple resonance 
at k = -2ip-'  iff p E (0, 00). 

Theorems 2. l (a)  and (6)  have natural extensions to the infinite centre case, i.e. 
when Y forms a discrete subset of R. However since our main interest in this case is 
when Y forms a lattice, i.e. 

Y = a Z  (2.32) 

we will only briefly discuss the general case here. Equation (2.32) will be extensively 
discussed in the next section. 

Consider 

I fl 

and define 

1, = (Yl, Yl + I ] .  

Let 

9 ( H Y )  = { g E H 2*2( R)lg'( y, ) = 0, j E 2). 
H d' 

dx' Y -  

Then its adjoint is 

and it can be seen that the functions 

4 / , ( X )  = 6 k b  -y,) j E  Z I m k > O  
span the deficiency subspaces of H,.  

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 



Solvable models in quantum mechanics 5163 

We define the self-adjoint extension /3 = (pJ)J,z,  pj E R, of H y  by 

c d2  
= p , y  = -- 

d x 2  

9(E/3,,)={gE H 2 ’ 2 ( R \ Y ) l g ’ ( y J + ) = g ’ ( y , ~ ) ,  g(yJ+)- -g(yJ-)=pJg’ (yJ) ,  jEZ) 
(2.38) 

p = ( p J ) / E z  

(Obviously Z p , y  is symmetric. That it is actually self-adjoint follows from, e.g., [ l l ] . )  
Then we have the following. 

-a2 < pJ < CO j E Z. 

Theorem 2.2. Let pJ E R\{O}, j E Z .  
( a )  The resolvent of is 

(2.39) 

1 & E  H 2 . ’ ( R ) ,  Im k > 0 ,  k’Ep(E,.,) 

The above decomposition is unique and 

If (1, E 9(E.p,y)  and + = 0 in an open set R c R, then E,,,+ = 0 in R. 

Proof: Similar to that of theorem 2.1, see also [3]. 

3. The case Y = a 2  

(2.42) 

(2.43) 

In this section we will study various properties of the operator E,,,. However the 
analysis will, in contrast to the previous section, be done by relating the self-adjoint 
operator Zpp.,z on L 2 ( R )  to a second-order difference operator on 1 2 ( Z ) .  This technique 
was introduced in [ 5 ]  for operators with 6 interactions and rediscovered in [12] (cf 
also [13]). 
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Theorem 3.1. Let p, E R,  j E Z,  a > 0 and k 2  E R, Im k 3 0, k # ( n - / u ) j ,  , j E 2. Assume 

(3.1) - 
= f l , a Z $ k  = k 2 $ h  

with (Lh,  4; locally absolutely continuous on R\aZ, and 

+ ; (a j+ )  = + ; ( a j - )  (Lh(aj+) - +k(a j - )=  p,+'(aj) j E 2. (3.2) 

(3.3) 

where 

j E 2. [ - p j k  sin( k a )  + 2 cos( k a )  
1 

M j (  k )  = 

Conversely any solution of (3.3) and (3.4) defines via 

cos[ k (  x - a j ) ]  
k sin( k a )  $ k ( ~ )  = + L ( a j ) k - '  sin[ k ( x  - a j ) ]  + { -+L (u ( j+  1))  + + ; ( a j )  cos( k a ) }  

Remark. The analogues of (3.6) and (3.7) for 6 interactions can be found in [13] (cf 
also [3]). 

Proof: Equations (3.31, (3.4) and (3.5) are verified by explicit calculations. If Gk E Lp( R )  
and thus + Z  E L p ( R )  we can infer +; E L P ( R )  for 1 c p  s CO. Furthermore 

(Lk(uj)= & ( x ) k  s i n [ k ( x - u j ) ] + ( L A ( x )  cos[k (x -a j ) ]  X E  (uj, a U +  1)) (3.8) 

then proves that { $ L ( U ~ ) } ~ ~ ~  E l"(Z) ,  and 

[+k(aj+ ) ] I +  k - ' [ + ; ( a j ) I ' =  [+k(x)12+ k-*[+!~x)I'  x ~ ( a j , a ( j + l ) )  (3.9) 
then proves that { + k ( a j ) } ~  12(2). Assume now that { + ~ ( a j ) } J c , ~  I p ( Z )  for p = 2  or 
00. Then (elk E L"(R) from (3.5) and 

[ & ( x ) I 2 +  k - ' [ ( L ; ( x ) ] *  = K 2 [  +A(aj)]'+ k - 2  s i f 2 (  k a ) {  - (Lh(u( j  + 1 ) )  

+ $;( a j )  cos( k a ) } I  X E  (a j ,  a ( j +  1)) (3.10) 

then proves that (Lk E L 2 ( R ) .  
Equation (3.7) is proved as follows. From the Schrodinger equation we see that 

Gk and $: satisfy the same inequalities, and by integration 4;  also satisfies the same 
inequalities. The proof is completed. 
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The analysis in theorem 3.1 can be extended to the case of an arbitrary discrete subset 
Y. However in that case (3.6) and (3.7) are only valid as implications from the left-hand 
side to the right-hand side. For a more detailed study we assume 

P , = P E R  j E 2. (3.11) 

Then the operator E:p.oz, being invariant under translations by aZ, can be decomposed 
as a direct integral. We introduce 

c d' 
=p,oz(e)  = -- 9 ( Z : p , , z ( e ) ) = { g ( 0 ) ~  ~ ' , ~ ( ( - $ a , i a ) - { ~ ) ) )  d v 2  

g(e ,  - a / 2 + ) = e " " g ( ~ ,  a / 2 - )  g'( e, - a / 2 + )  = e'"g'( e, a / 2  - )  

gye, o + )  = g'(e, 0-1 g ( e,o + ) - g( e,o - = gf( e,o) 1 
- - a < p s w  e E  [ - x / a ,  x / a ) .  (3.12) 

and define the operator U by 

extending it to a unitary operator on L 2 ( R )  by continuity. 

Theorem 3.2. Let P E R, a > 0. Then 

(3.14) 

Before we prove this theorem we will analyse the spectrum of Z:p,oz(0) in detail. 

Theorem 3.3. Let /3 E R, e E [ --x/a,  x / a )  and a > 0. Then 

a e s s ( = p , a z ( e ) )  = 0. (3.15) 
The eigenvalues E k " ( 0 )  of Zf i ,oz(0) ,  ordered according to their magnitude, are given 

EP,."(e) = [ k ? " ( e ) l 2  Im kP,."( 6 )  > o (3.16) 

by 

where k k " ( 6 )  solves 

cos(8a) = c o s ( k a ) - i p k  sin(ka). (3.17) 
For P E R - { O } ,  except for /3 = -a, rn = 1 and 13 = 0, the eigenvalues are simple with 
corresponding eigenfunctions 

( exp(ik?"( 6 ) v )  + elea exp( -ikk"( 6 ) a )  

m E N  e E [ - x / a , x l a )  and m a 2  for P = - a  and e=O.  
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If 0 = -a, then E;"'"(O) = 0 is twice degenerate and 

are the corresponding eigenfunctions. Furthermore we have for p > 0 

E ~ . " ( O ) = O < E y , " ( - r / a ) < E ~ , ' ( - r / a ) =  r 2 / a 2 <  Ef."(O) 

< E f,"( 0) = 4 r 2 /  U' < E f s a  ( - r/ a )  < E f a (  - r/ a )  = 9r2/  a' < . 
and for < 0 

Ey."(-.rr/a) < Ef."(O) < Ef*" (O)  < E f . " ( - r / a )  = r 2 / a 2 <  E f . " ( - r / a )  
< E ~ " ( 0 ) = 4 ~ 2 / ~ 2 < E ~ q " ( O ) < E , P 3 " ( - r / a ) = $ r 2 <  . . .  

(3 .19)  

(3.20) 

(3.21) 

- a s p C O  
> O  p < - U .  

All non-constant eigenvalues E i a (  e), B E  [ - - r / a ,  ria), m E N are strictly decreasing 
with respect to p E R. 

E:",@) = [*e+2(m - 1 ) r / a I 2  
E i " ( 0 )  = [2( M - 1 ) r / a l 2  E Y ( - r / a )  = [(2m - l ) r / a ] '  m E N (3.22) 

gy,(e, v )  = e E ( - r / a , O )  mE N 

m E N 
m 3 2 

For p = 0, EP,"( e)  equals the decomposed Laplacian and we have 

e E ( - r / a ,  0) mE N 

e ~ [ * H + 2 ( m - l ) ~ l a l v  

cos[2(m - l ) ( r / a ) v ]  
sin[2( m - 1)( r/ a )  v ]  

g Y ( 0 ,  v )  = c 

cos[(2m - l ) ( r / a ) v ]  
sin[(2m - l ) ( r / a ) v ]  m E N.  

g i " ( - r / a ,  v )  = c 

(3.23) 

For p =CO we have 

(3.24) 

ProoJ: Equation (3.15) follows from the fact that S:p,az(0) has a compact resolvent. 
To prove non-degeneracy of the eigenvalues E!""(@),  8 E ( - r / a ,  r / a )  - { O } ,  one can 
follow the proof of theorem 2.1. We use (3.3) to prove (3.17). More precisely, we 
make the ansatz 

Im( k) a 0 j E 2. (3.25) 
By inserting this in (3.3), (3.17) follows immediately. A tedious but straightforward 
calculation then proves the remaining statements. 

1181 k )a, 
cclL(aj) = e  
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With this theorem, we now turn to the proof of theorem 3.2. 

Proof of theorem 3.2. Let 

9°","(e) = [g",'(e), m E NI (3.26)  

be the linear span of all the eigenvectors of Ep,oz( e )  as described in theorem 3.3. Then 
9 " 3 a ( e )  is a core for z:p,az(e) and by explicit calculation one verifies that 

( uzP,,,u-'g",')(e, V )  = E",'(e)g",'(e, V )  = ( z : p , o ( e ) g a ~ a ( e ) ) ( v )  (3.27) 

which proves (3 .14) .  

Using now the basic relation 

c(z,p.az) = U c ( E : p . u z ( e ) )  
O F  [ - n / a .  T I  a 1 

(see e.g. [ S I )  and theorem 3.3 we can compute the spectrum of E:p ,az .  

Theorem 3.4. Let p E R, a > 0. Then Z.p,,z has an absolutely continuous spectrum, 

5167 

(3.28) 

(3.29) 
m E N. 

m odd 
m even 

(3.30) 
bk" < m 2 r 2 / a '  m E N  

m odd 
m even 

m a 2  

(3.31) 

bPa{ 'O - a s p < O  
=O p <-a .  

Asymptotically, as m + 03, the length of the mth gap a$:l - bk" and the width of the 
mth band b;" - a k a  satisfy 

a k ~ , - b ~ " = 2 m ~ r ~ a - ~ -  

a k l  a m  

(3.32) 
+ a ( m - 2 ) .  8 8  b"."- P O = - - -  

m a,' 
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When p E R\{O}, 
p # -a, all gaps are open. However when p = -a,  the first gap closes at zero. 

has infinitely many gaps in its spectrum. When in addition 

For p = 0, we have Eo,,z = -d'/dx2 on H 2 , 2 (  R )  and hence 

d % , * z )  = [O, a). (3.33) 

For p = a3, S,,,z equals the Neumann Laplacian on R\aZ and hence S:r,aZ equals 
the direct sum of Neumann Laplacians on (ma,  ( m  + l ) a ) ,  m E 2. Thus 

u c ( % a Z )  = 0 m e s s ( E : x , n Z )  = ~p(E:r ,aZ)  = I m ' ( r ' / a ' ) / m  E NI. (3.34) 

Finally we have that 

O G p ' < p  
--oc s p ' < p < -a. 

- 
4 - p . o z )  = d E p , . o z )  

d E p . a z )  = dE:p.,oz) 
(3.35) 

The band edges a k a ,  bk",  m E N, are continuous in ,L3 E R. 

Proof: To prove the absence of eigenvalues for Ep,,z, p E R ,  we differentiate (3.17) 
with respect to 0 when k = kk"(  e ) ,  i.e. 

-a  sin[k:"(~)a]-; p s in[kP, . " (~)a]  
I 

(3.36) 

J 

Hence ( k i d ) ' (  0,) = 0 for some 0" E ( - x / a ,  0) yields the contradiction sin( Boa) = 0 ,  and 
we conclude that k t " ( 0 )  is strictly monotone in 0~ ( - r / a ,  0).  Thus the set 0 E  
( - 7 ~ / a ,  O)lEk"( 0 )  = E,} has zero Lebesgue measure which implies the absenco of 
eigenvalues using [8], theorem XIII.85. The absolute continuity of the spectrum follows 
from [ 141. 

The rest of the theorem follows from a straightforward computation using (3.17) 
and theorem 3.3. 

Remark. The above theorem exhibits two curious facts. First of all the bottom of the 
band spectrum of E,.,, starts with the antiperiodic eigenvalue E f . " ( - r / a )  for p < O .  
Clearly this is due to the fact that for k = i ~ ,  K > O ,  the right-hand side of (3.17) 
converges to -@ as K + oc for p < 0 (whereas it converges to +CC as K + CO for p 3 0). 
In fact the standard non-degeneracy statement for ground states of reduced Schrodinger 
operators with periodic boundary conditions (i.e. with 0 = 0) [8] breaks down since 
the ground-state wavefunction of Z,,,z(0) in fact does change sign. The second 
curiosity concerns the fact that iff p = -a  the first gap in the spectrum of Z, ,az  closes. 
Together with the unusual behaviour of widths and gaps in (3.32), this model serves 
as a counterexample to some of the standard folk wisdom in connection with one- 
dimensional periodic Schrodinger operators. 

In figure 1 we have illustrated the function & ( E )  = C o s ( f l ) - i p f l s i n ( f l ) ,  
Im f l 3  0 for various values of p. Using (3.17) and (3.28) we see that 

E E a ( E : p , u z )  iff f,(€) E [-1,1]. (3.37) 
The energy bands €k'( 0 )  as functions of 6 are illustrated in figure 2 when 0 E [ -r, T )  

(reduced band scheme).  Finally in figure 3 the spectrum of ZP,,  as functions of p is 
given. 



Solvable models in quantum mechanics 5169 

Figure 1. f p ( € ) = c o s ( ~ ' ~ ) - - f P ~ ~ s i n ( ~ / ~ ) ,  I m t E 2 0 .  ( a ) ,  p=1.2; ( b ) ,  p=-O.8; ( c ) ,  
p = -1; ( d ) ,  p = -1.4. The dependence on p, a in a!;",  bf;" and E!;"(B)  is for simplicity 
suppressed. We use a = 1. 

The density of states dpP," /dE of can be explicitly computed as the next 
theorem shows. 

fieorem 3.5. Let p E R, a > 0. Then the density of states of ZP,"= at a point E = k2 E 

equals 

dpP," sgn(p)  Isin(ka)l 
- [1+ ka cot(ku)] 

(1 d E  2.irlkl Isin(O(k)a)l 2a 

where 

U 
(-1)"+la-'  

m m - '  m odd 
p 3 0  

m even 
O(k) = 

( - l ) m a - '  cos-'[cos(ka - f p k  sin(ka)] 

(3.38) 

(3.39) 

k2E (a?", b?") Re k s O  Im k s O  m E N. 
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A E,  (e 1 

Figure 2. E % ' ( e ) ,  m EN,  as a function of @ E  [ - r / a ,  r / a ) .  ( a ) ,  p = 1.2; ( b ) ,  p = -0.8; 
( c ) ,  p=-1; ( d ) ,  p = - 1 . 2 .  The dependence on p, a in a%', b:" and E:"(@)  is for 
simplicity suppressed. We use a = 1. 

Furthermore 

near band edges E t "  E {a t4 ,  b $ a } m e N .  

ProoJ: Equation (3.38) follows from 

dpPS4 1 d8(k)  
d E  - 2 r k  dk * 

(3.40) 

(3.41) 

Our final topic in this section concerns half-crystals, i.e. the analysis of E:P,4N. In fact 
one can study the more general operator E'p-+,4z where 

(3.42) 
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Figure 3. ~ ( f ~ , ~ ~ )  as a function of p E R. The dependence on p. a in a&;", bf;" and 
Efl;"(O) is for simplicity suppressed. We use a = 1. 

We then have the following theorem. 

Theorem 3.6. Let a > 0 and  p' E R. Then 

In particular 

( T ( S ~ . ~ , ~ )  = [a$*", bf."] U [o ,  00). (3.44) 
The spectral multiplicity of EP + , a Z  equals two on the interior of the intersection 
a(E.p-,,z)na(E.p+,oz) and  one on the interior of the rest, i.e. on 
(+(S:p-+,az)\{a(z,~,,z) n a(SB+,aZ)}. 

Proof: The difference equation (3 .3)  is now 

$L(aCi-l))+*L(a(j+ l))+pj$L(uj) = E*L(aj) j E Z  (3.45) 
where 

E C E = E (  k)  = 2 cos( ka )  j E Z  (3.46) 
and 

Let 

and 

(3.48) 

(3.49) 



5112 F Gesztesy and H Holden 

By inserting +'* into the difference equation (3.45) it reduces to 

c o s ( 6 , a ) = i ( e - p f )  Im 0 , 2 0  (3.50) 

for j s - 2  and j 3 1 respectively. By using the equations for j = -1 and j = 0 for 4'*, 
one finds that there exists a unique non-trivial solution for ?', R' and f r ,  R' respectively 
provided 

e-+  e+ z 0. (3.51) 

Define the bounded, self-adjoint difference operators on I 2 ( Z )  by 

(h04)J = 4J-I + 
Then 

( ' 4  ) J  = ( '04 1, + p,+J 4 E 12(Z) .  (3.52) 

d h o )  = g c ( h J )  = [-2,21 rp( hd = 0 (3.53) 

- 2  + min(p- ,  p + )  G h G 2+  max(pcl, p - ) .  (3.54) 

which implies 

Thus (3.50) determines the values E E ~ ( h )  with O* E R. Without loss of generality we 
may assume 

8,  E [O, rial. (3.55) 

Then 

~ ~ [ - 2 + m i n ( p ~ , p + ) , 2 + m a x ( p - , p + ) ] = ( ~ ( h )  (3.56) 

which implies, using theorems 3.1 and 3.4, that 

k Z E  g ( E p - , o z )  U ~ ( E p * , ~ z )  Im k 3 0 .  (3.57) 

The multiplicity statement follows by noting that 4" are linearly independent on the 
interior of the intersection u ( E P  n V ( E ~ + , ~ ~ ) .  Absence of a singular continuous 
spectrum follows by the standard technique (cf e.g. [15]) and to show absence of 
eigenvalues one has to prove the same property for h which is easily seen to be true. 

4. Impurities and defects in crystals 

Consider the situation where we have given 

Y = {yJ E Rlj  E J }  Y, < Y , + I  inf lyJ - yJ.l = d > 0 j c Z  (4.1) 
1.J C J  

J f l  

and p = ( p I I ) J E J ,  p,., E R\{O}, bounded. Let 

Z = { z , ,  . . . , Z M ) C  R M E N  (4.2) 
be the location of the impurities relative to Y and let the strength of the 6'  interaction 
in Z be given by y = (yz , ) ,= , ,M,  yz, E R\{O}. Let E:p,v,y,z denote the total Hamiltonian 
with 6' interactions with strength p located at Y and with additional 6' interactions 
with strength y located at Z. We then distinguish three cases. 

(i) Assume 

Y n Z = 0 .  (4.3 1 



Solvable models in quantum mechanics 5173 

Then Eo. L,y,z  represents the Hamiltonian with interstitial impurities located at Z relative 
to E o , y .  

( i i )  Assume 

zc Y Y: = -P ;  iff Z E  Z. (4.4) 

Then Z p ,  L,y ,z  represents the Hamiltonian with defect impurities or vacancies located 
at Z relative to 

( i i i )  Assume 

zc Y Yi f -Pi )'E Y. (4.5) 

Then Zp,,,y,z represents the Hamiltonian with substitution impurities located at Z 
relative to Z p , v .  

We then have the following theorem. 

Theorem 4.1.  Let Pi, ~ . - E R \ { O } ,  Y E Y ,  Z E Z ,  Y , Z c R ,  satisfy (4.1), (4.2) and one 
of (4.3), (4.4) and (43 ) .  Then 

k2j-I 
( ~ : , * , y , z -  

k 2 E  P ( ~ : p . , . y , z )  I m k > O  (4.6) 

where G k , p , ,  = (Eo. ,  - k'j-l, Im k b 0, with integral kernel C A . p , v ( ~ ~ , ~ ' )  and 

(4.7) 

Furthermore 

Proox Equation (4.8) and the statement following that follows from (4.6) as in theorem 
2.1. Equation (4.6) can be inferred by using Krein's formula (see e.g. [16]) and noting 
that both Zp,V and Ep,y,y,z are self-adjoint extensions of the closed, symmetric operator 

with deficiency indices ( M ,  M ) .  

We now turn to the detailed analysis of the pure crystal with one impurity. The 
following lemma was shown in [17] for the model with 6 interactions, see also [3]. 

Lemma 4.2. Let k2 be in the mth gap of i.e. 

m E N ,  (4.10) k 2  E (b;" ,  a;:, )  I m k 2 O  b f "  = -a 
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and  suppose that K = e"" where 0 = m r / a  + is ,  6 > 0, m E No is a solution of (3.17) 
such that 

Pk 4 ( K  + K ' )  = cos(ku) --sin(ka). 
2 

(4.11) 

(4.14) 

Then r (k )  is a continuous, strictly decreasing function of k2 in each gap in C T ( ~ ~ , ~ ~ ) ,  

and r (  k)  is decreasing from 0 to --CO in every even gap. If p > 0, r (  k)  is also decreasing 
from +a to 0 in every odd gap. If p < 0, r (  k)  is decreasing from M to 0 in every odd 
gap except the first (i.e. m = 1). If -a < p < 0 and m = 1, r (  k)  is decreasing from 0 to 
-00, and if p < -a, and m = 1, r ( k )  is decreasing from M to 0. 

( b )  Define 

(4.15) 

Then i ( k )  is a continuous, strictly decreasing function of k' in each gap of C T ( E ~ , ~ ~ ) .  
If p > 0, F( k )  is decreasing from 0 to --CO in every gap except the zeroth gap where 
F( k)  is decreasing from - p / 2  to -W. If -a  < p < 0, F( k) is decreasing from CO to 0 
in every gap except the zeroth gap where F( k)  is decreasing from - p / 2  to 0 and the 
first gap where F( k )  is decreasing from 0 to -W. If p < -a, i( k)  is decreasing from 
M to 0 in all gaps except the zeroth gap where F(k) is decreasing from - p / 2  to 0. 

Remark. By definition the first gap in C T ( E ~ . ~ )  always carries m = 1 irrespective of 
whether it is open (i.e. p # - a )  or  closed (i.e. p = -a ) .  

Proof: By explicit computation one verifies that 

k > O  

r( k)  = (4.16) 

k=iK K > O  

and 

(4.17) 

with 

t ( k ) = c o s ( k a ) - t f I k  sin(ka) t( iK) =Cosh( OK) +f PK sinh(aK). (4.18) 



Solvable models in quantum mechanics 5175 

Before we proceed to the detailed separate results for one substitutional, defect and  
interstitial impurity, we derive the basic eigenvalue equation common for these three 
types of impurities. We want to solve 

with Saz(z)  = 1 if z E aZ and 0 otherwise. 

linear combination of the functions 
If X E  R\{z}, $k(X)  also solves (spp.az$k)(x) = k2Gk(x) which implies that $k is a 

e ( ’ COS( kx’) -COS[ k(x’- U ) ]  
X 

COS(e(k)a)-cos(ka) 

x ’ = x - a ] x / a [  X E R  I m k z O  Im B ( k ) z O  

Re fl(k)>O a=* l  (4.20) 

where ]y[ denotes the largest integer smaller than or equal to y and 6 = O(k) satisfies 
(3.17). $z,p,az,  U = *l, satisfy 

(4.21) 3 

=p,aZ+;I.o,aZ = k2$;,p.az. 

A short calculation then gives 

2i s in (e (k )a )  sin(ka)+ ky{sin2(kz’)+sin2[k(z’-a)]  

-2sin(kz‘) s in[k(z’ -a ) ]  cos(e(k)a)}=O (4.22) 

where z ‘=  z - a ]z / a [ ,  Im k 2 0, Im e ( k )  2 0, as the equation for the possible impurity 
state. 

Theorem 4.3. (One substitutional impurity.) Let z E aZ, a > 0, and p, y E R\{O}, y # p. 
Then 

(4.23) - - 
~ , s , ( ~ ~ , a z , y , z ) = ~ a , ( = p , a z , p , z )  = C+(Ep,az) (+sc(=p.az,p.z)  = 0. 
Furthermore we have below ( T ( E ~ , , ~ )  (i.e. in the zeroth gap). 

(i) Sp,az,y,z has exactly one simple eigenvalue in the zeroth gap of C T ( Z ~ , ~ ~ )  iff 
Y < - P .  
For the other gaps we have the following cases. 

(ii) If P > 0, y > 0, S:P,aZ,y,r has no eigenvalues. 
(iii) If p > 0, y < 0, Sp,az,y,z has one simple eigenvalue in every gap. 
(iv) If -a  < P < 0,  y > 0, Sp3aZ,y,r  has one simple eigenvalue in all gaps except the 

(v) If -a  < p < 0,  y < 0, Ep,aZ,y , r  has one simple eigenvalue in the first gap (rn = 1). 
(vi) If /3 < -a, y > 0, Sp,az,y,z has one simple eigenvalue in all gaps. 
(vii) If P < -a, y < 0, Epp,az,y,z has no eigenvalues. 

first gap ( m  = 1). 

The eigenvalue satisfies the relation 

cot( ka) = - k2E R \ U ( S ~ , ~ ~ ) .  (4.24) 
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F’rooj Absence of embedded eigenvalues follows from the fact that a possible eigenvec- 
tor would be a linear combination of +z,p,az,  (T = *l, which however are not decaying 
when k2E U ( Z ~ , ~ ~ ) .  Equation (4.23) follows from (4.6), (4.8) and [8]. Equation (4.22) 
which in this case reduces to (4.24) is equivalent to 

i ( k ) = i  y (4.25) 

in lemma 4.2( b) from which the theorem follows. 

Theorem 4.4. (One-defect impurity.) Let z E a2, a > 0, and  p E R\{O}. Then 

(4.26) - - - 
( T e d =  p.az.-p,z) = g. ic (=  p.02,-p,z 1 = d s p.02)  g s c ( = p , a Z , - p , : )  = 0. 

Furthermore 
(i) if ,8 > 0, Zp,az,-p,z has one simple eigenvalue in all gaps except the zeroth; 
( i i )  if -a < p < O ,  Spp,az,-p,z has one simple eigenvalue in all gaps except the zeroth 

( i i i )  if p < -a, Ep.aZ,-P,z has one simple eigenvalue in all gaps except the zeroth. 
and the first; 

The eigenvalue satisfies the relation 

1 
co t (ka )=  -- k2 E R \ U ( E ~ , ~ ~ ) .  (4.27) 

kP 

Proof: The theorem follows by letting y = - p  in theorem 4.3. 

Theorem 4.5. (One interstitial impurity.) Let z = a, a > 0, and p, y E R\{O}. Then 

We now have the following cases. 
( i )  I f  p > 0, y > 0, ZoP.aZ,y.r has one simple eigenvalue in every odd gap. 
( i i )  If p > 0, y < 0, Zp,oz,y,.- has one simple eigenvalue in every even gap. 
( i i i )  I f  -a  < p  < 0, y >  0, Zp,aZ.y,2 has one simple eigenvalue in every odd gap 

starting with the third gap. 
(iv) If -a < p < 0, y < 0, 5p,az,y,. has one simple eigenvalue in every even gap 

(including the zeroth) and  in addition one simple eigenvalue in the first gap. 
( v )  I f  p < -a, y>O,  =p,az,y..- has one simple eigenvalue in every odd gap. 
(vi) If p < -a, y < 0, 5p,oZ,y,; has one simple eigenvalue in every even gap (including 

The eigenvalue satisfies the relation 

- 
the zeroth). 

’ pk[tan(i  k a ) ] - ’ + 2  
k’ E R \ u ( E ~ , ~ ~ ) .  p k  tan(; k a )  - 2 

(4.29) 

Proof: The proof is similar to that of theorem 4.3 except that we now apply lemma 4.2( a ) .  

Although we explicitly omitted the possibility that p = -a  in theorems 4.3-4.5 (implying 
that the first gap associated with m = 1 closes) this situation is easily obtained by 
continuity of a ( Z P , U Z , Y . L )  with respect to f i  and simply disregarding the statements in 
theorems 4.3-4.5 concerning the case m = 1. 
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The anologues of theorems 4.3-4.5 for models with 6 interactions were derived in 
[ 7 , 1 7 ] .  With the results in theorems 4.3-4.5 one can proceed to the computation of 
the scattering matrix for the pair (EoP.aZ,y,z, Eo,,z). Furthermore one can study 
impurities in half-crystals. For a discussion of these two subjects we refer to [3]. 
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